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Errata for

CLUSTER ANALYSIS BY LINEAR CONTRASTS
(RB-72535)
_Micha.el Shafto

Page 9, equation (26)

now reads:

"F(b) = b'Rb - [tr(R)/n] (b'1)"

should read:

"F(b) = b'Rb ~ [tr(R)/n] (b'1)>"

Page 9, paragreph immedjately following equation (26'),

second sentence, -

now reads:

"This solution is invariaht under transformations
of the form ri,j -+ a.r:l.j + ¢ , while the Method A
solution is invariant only under tranzformations

. . "
of the form riJ + a.ri.j .

should read:

"Solutions by either Method A or Method B are
invariant under transformations of the form

r., +ar,, +c ."
ig T8yt

November 17, 1972




CLUSTER ANALYSIS BY LINEAR CONTRASTS® -

Michael Shafto
Princeton University and Educational Testing Service

Introduction =

L. L. McQuitty (1967) has suggested a techhique of hiex‘-archic‘al cluster
analysis called Iterative Intercolmnn;a.r Correlational Analysis (IICA-). Mc‘Q,uifty
and Clark have provided a. discussion of the mathematiés of this techniqué , its
application to real and artificial data, and its a.dva.nta,ges and disadva.nta.ges
in comparison with other me‘thods, (Clark. & McQ,uitty,. 1970; McQuitty, 1971;
| McQuitty,iAbeles , & Clark, 1970; McQﬁitty & Clark, 1968). Coles and Stone
(1972) have suggested a ‘related technique. .‘

IICA beéins with a raw data matrix from which a first-order similarities
matrix R(l) is computed (of , in some cases, Ri(l) may be obtained directly
by subjects' similaritjijudgments). The"la.rger the ij -fh entry in 3\(1) ,

the more "alike" or "siJnila.‘;'," in some 'senée, stimuli i and j are judged

to be. A second-order .simila.ritieé matrix R(a) is tﬁen computed by intercor-
relating the columné of‘ R(l) . That is, the. 13 -th entry in R(a)’ is thé'
product-moment .correlation between éélumns l an'd‘- J of R(l) Then R(-5)
is computed by intercorrelating the columns of R(a) , and so on, until a
matrix R(K) is produced in which all elements have absolute value unity,

within reasonable tolerance limits. The stimuli are then partitioned into

two subsets: Those with +1 in the first colum of R(K) go in ‘one subset;
those with -1 go in the other. (Any column could be used, not just the first.)

A discussion of the convergence problem may be found in Clark and McQuitty (1970).

lResearch supported by National Science Foundation Grant GB 8023X with
Princeton University, project on "Mathematical Techniques in Psychology," Harold
Gulliksen, Principal Investigator, and by Educational Testing Service.

The author is grateful to Dr. Walter Kristof for many valuable suggestions
and comments on an earlier version of this report. The assistance of Mrs. Ann
King in supervising the preparation of the manuscript, and of Mr. Terry Birch in

drawing the figures, is also gratefully acknowledged. 2
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The purpose of this paper is to suggest a technique of cluster ana.lysis
which is similar in aim to IICA, though different in deta.il. Two methods will
'be proposed for extra.cting a single bipola.r factor (a "contrast component")
directly from the 1n1t:|.a.l similarities matrix. The advantages of this general
approach are that (a.) it helps avoid certain mJ.scla.ss:Lfica.tion problems
inherent in IICA; (b) it is related in a straightforward-wa.y to conventional
techniques of multidimensiona.l scaling (Torgerson , 1958) and therefore allovs
a unified treatment of dimensional and "typal" structures, and (c) it prov:|.des
_ an interesting solution to the problem of relations among linear contrasts
based on different subsets of the stimuli. This la.'st problem was initially

raised by McQuitty (1967).

I. Matrix Algebra of One IICA Itera.tion

The following discussion of the xna.trix algebra of one IICA cycle is
intended to clarify the rela.tionship between IICA and the new techniques out-
Jined below. | |

Consider a typical iteration.,. starting with R(_k) and ending with R(k+l)_ .
The superscript will be dropped from R( ) for purposes of the following dis-
cussion. |

R is an nx n symetric matrix vwhich is positive semidefinite for
k _>_ 2 ., Therefore, there exist matrices U and D , such that D is diagonal,
Ut =u™t, and R = UDU' . |

Let 1 be a column vector of n 1's, and let I be the nxn identity

matrix. Define
(1) M=I-11"'/n ;

(2) R=MR
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(3) A R'R = UDU'M'MIDU' = UDU'MUDU" since M is idempotent;
(%) ' T=U'M ; end | |
,.(5) : ‘v_13=U'; .
Thus,
(6) T=I-b'e |,

and the general element of T is

(7) t:l.;] = Sij - bibj/n- 5

where 513" is the Kronecker delta.

By +he Cauchy-Schwarz inequality,

(8) C lbil S\l-ﬁ ) i = l,--c,n .
Tharefore,
(9) ‘ lbibjl Sn L vib’j =1l,e04m .

 Now suppose that the inequality in (8) holds for each i , as it almost

always will with real data. Then all the diagonal elements of T are positive.

-

_ Define
(10) C = [diag(T)]-%T[diag(T)]-% ; and
(11) W= UD[dia.g(T.)]% .

" Thus,
(12) A=WoW' |,

and the k + 1 -order similarities matrix is given by




"

[

(13) R‘kﬂ) = ‘[dia.g (A)]-%A[diag(A)]- .

Nowv C 1is positive semidefinite, since (%) and (10) imply

() C = [c}iaxg(T)]"léu'ivm[diag(T)]'7%-T s
where M is idempotent, therefore positive semidefinite, and, by the "law of
inertia," the transformations from M to C preserve definiteness. Further-
more, it is clear from (10) that each diagonal elemenf. of C is unity. Thus,
the necessary and sufficient conditions for C‘- to be a.‘ matrix of cosines between
pairs of vectors in Fuclidean n espa.ce ja.re satisfied.

Therefore, (12) is the familiar ekpression for the inner-products matrix if

' ]

of a set of vectors, where the columns of W brepresent the coordina.tes of the

vectors with respect to n oblique axes (wl,_a,...,gh) , and Sy is the

-
!

cosine of the angle between W and wJ . |

‘In effect, then, the IICA method performs a transformation of the vectors :
(or points) that represent the judged stimuli. The. na.ture of this tra.nsforma-
tion is as follpwé: bThe vectors at "time k " had coordinates UD w1th respect
to n orﬁhogenal axes. The vectors at "time k + 1 " have coordinates
[diag(A)]-%w ~with respect to n oblique axes. The cosines between‘ pairs of
obligue axes are the elements of C .

The effect of this transformation can be seen more clearly by noting

(15) ¥ = uldns/— and

= oo N (n - )0 - v

T IRt

Sl

i
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In equation (15), since bi = g:!L}_ , the expression under the radical
attains its ma.x:l.mmn precisely when the sum of the elements of u, is 0.
NOW dii ='u: Ru , which is the squared length of the vector B-i . (if R
vere the d:|.spers1on matrix of a set of n random variables, then th1s quantity
would be the variance of the particular linear combination of those varlables
represented by ui ) Thus , in order for the elements of W, to be "large,"
the length of u, must be "1a.rge," and the sum of the elements of u; , i.e.,
the sum of the projections of the vectors representlng the ,]udged stimuli on

u, s must be "sma.ll."

Consider equation (16): cy5 is indeterminate 0/0 if either b?_ =
” .

or b,j - ,1 but this will seldom oceur with real data. As b, or bj _
approaches O , so does cij . If Ibil and ijl are large, and if they
have the same sign, then cij becomes large and negative; if they have
0ppos.ite signs, then cij becoines large and positive.

Intuitj.vely; equations (15) and (16) represent two "processes" which are
being "applied" siniulta.neousiy‘ to the vectors which represent the ,jjudged stimuli
in IICA. Equation (15) states that bipolar axes are "lengthened" while nonbi-
polar »a.xes are "shrunk." Equation (16) states that bipolar axes tend to remain
orthogonal to one another, while nonbipolar axes are rotated tdﬁard or 'away
from one another so that they tend to '"collapse" into bipolar axes.

This is how IICA converges toward a single bipolar axis, as illustrated
in Clark and McQuitty (1970). 1In the early iterations the stimulus-vectors are

transformed toward bipolarity. The greater the initial departure from bipolar-

ity, the greater the "correction factors." As bipolarity is attained in the

1

Note that, if by =n , then b =0, for all K#£3

L 6
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later i%erations, the IICA process becomes similar to the wel...-known pover-
method (Anderson, 1958) for extracting the largest 1atent root and correspond-
1ng latent vector of a real sy'mmetrlc matrix. The "process" repreeented by

(16) becomes negligible in the later iterationms.

" II. Alternative Mgthods

The fadt that IICA transforms the stimulus-vectors themselves, rather than
providing a solution in terms of the original configuration, seem..s , a priori,
to 'be’a drawback. Are the clusters revea.led by the method prominent in the
data, or are they "weak"--perhaps even a.rtlfa.cts of the method itself? Besides
such theoretical questions, there are practical problems w1th IICA, as shown in
Section IV below, whicp can be avoided by the alternative techniques suggested
here. Moreovér s thefs'tl_a altefna'give techniqﬁes allow the unified treatment of
dimensional and "'ty';)al" structures, as originally suggested by MceQuitty (1967).

Two methods wrill be 'prOposed. Neither of these methods requires ‘ad.ditional"
assumptions about fhe initial data matrix. Both involvé extracting a single '
“bipolar factor in such a way as to display thé major clusters, and both can be.
applied recursively to yield hierarchica.l solutions. Neither makes any trans-
formation of the original stimulus configuration. |

Method A

Ignoring equation (16), and concentrating on equation (15), we seek a

vector b , such that Db'Rb 1is "large" and |‘9_’ll is "small." (Note that

this b is not the b of Section I.) Proceeding rather directly, we seek to.
maximize b'Rb under the constraints b'b =1 and b'l1=0. Introducing

Lagrange multipliers 710 Yo we write




=T=-

(A1) F(oyy,) = bR - 7@ - 1) - 7p('D) -

Differentiating F with respect to b, 7y and Yo and setting the

derivative equal to 0 , yields

(18) 2Rb - 27,0 - 7, =0 3
(19) b'b-1=0 ;and
(20) b'1 =0 .

Premultiplying (18) by 1' gives
(21) 7, = 21'Rb/n .

Premultiplying (18) by b' gives
(22)

- 1
7y = 2 Rb .

Substituting for 7é in (18) gives

(23) (T -2'/n)RB =70,

or, folloﬁing dur previous définition of M,

(24) MRb = 7,0 -

But b'L =0 by (20), and it is easy to show that b'lL =0 iff Mo =D .
Therefore,2 (24) is equivalent to
(25) MRMD = 7,b -

From (19), (22), and (25), it follows that the desired solution, b* , is
the normalized latent vector of MRM  corresponding to the largest latent root.

But what is MRM ? It is simply the scalar-products matrix of the stimulus-

2'I'his step, which shortens the derivation of the solution by about one page,
was suggested by Dr. Walter Kristof.

¥
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vectors with respect to a coordinate system with origin a.t‘their centroid (see
Torgerson, 1958, p. 258, equation ). |

The vector b¥* represents the most salient linear contrast be"ween sub=-
sets of the stimuli. The stimuli can be ordered with respect to the correspondf
ing elements of b* . Two criteria whic’;*.v could then be used to partition the
stimuli into subsets (clusters) are |

1. Weak Criterion: Examine the n - 1 differences between adjacent

elements of b¥* (having arranged these elements in order of magnitude ), find
the largest such difference, and make the split between the corresponding

stimuli. This _should suffice when the clusters are fairly distinct.

2. Strong Criterion: Consider each of the n - 1 possible splits

" between pairs of stimuli which are adjacent with respect to b* ., For each

possible split, the original similarities‘matrix "R can be partitioned into
s1m11ar:|.t1es m clusters and similarities between clusters. Thus, for
each spl:l.t a quantlty can be computed which reflects the adequacy of the
part.ition. ‘It is naturally desirable to have large similarities within
clusters and small similarities between clusters. Therefore, cne formula |
which could be used would be forma.lly identical to the formula for the alpha
level by a median test. Choose the split which m:l.nlmizes the "alpha" for the
appropriate "one-tailed test." Of course, it is not suggested that the minimum
"alpha'" reflects the statistical significance of the clustering. It simply pro-
vides an intuitively appealing objective function which is sensitive to cluster
size as well as to differences in magnitude of similarities.

Certainly other methods of partitioning could be suggested. Examination

of b* itself, however, will often indicate the presence or absence of clear

clusters, and should provide a check on the adequacy of any method of partitioning.

9
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Basically, what is being suggested is to use a cne-dimensional scaling solution

as a heuristic to reduce the hum‘c.er of possible pai'titions ‘to be considered.

Method B :

The follov‘:ing method constra.‘ins' Ip_’}_l to ‘be "small"--but not necessa.rilyb
0 . Since wé want to makev’ b'Rb "large"' and IP_'}J | "small"' at the same time, é.
natural function to maximize is simply Db'Rb - (p_'l._)2 , again underb the con-
straint b'b =1 . But since the largest possible value of E'R‘g_ is the
largest 1a.t‘ent root of R , which caﬁ be no larger than tr(R) , ard the
largest possible va.iue of (‘9_'}_)2 is n , a more "balanced" objec‘tive function

is

b'Ro - [tr(R)/n] (0'2)

(26) © F(b)

b'(R - [tr(R)/nl11'}p ,

or, letting R* =R - [tr(R)/n]1l' ,

(26*) D'R*®, bh=1 .
The dg¢sired solution is simply the normalized latent vector corresponding
to the lé.rgest»latent root of R* . This solution is invariant under tra.nsforma'-

tions of the form riy * ary + ¢ , while the Method A solution is invariant only

under transformations of the form rij +ar; 5

The extraction of two or more vectors of R*¥ or MRM may be useful when
cross-classification, rathei than general hierarchical clustering, is desired.
Cross-classification is a special case of general hierarchical clustering,
since each of two subsets is partitioned with respect to the same dimension
or feature, whereas in general two different subsets would be partitioned with

respect to different dimensions. The variables can easily be plotted with

respect to an orthogonal coordinate system that displays the major clusters.

10

B R
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III. Relations Among Linear Contrasts Based on Different Subsets of the Stimuli

Suppose that a set of n stimuli has been :partitioned into two subsets,
Sl and 82 , according to a "contrast component" b derived by Method A or
Method B. Now Sl , which contains, say, ny stimuli, can be further sub-
divided according to a contrast component b, -

An important question, first raised by MecQuitty (1967, cf., his Figure 1),
is, "How are b and 1_)_lv related?" In particular, are b and -131

or not? At first this question seems meaningless, since b has n elements ,

orthogonal

while -131 has ny < n elements. How can a scalar product be computed between
two vectors that have different numbers of elements?
The following solution to this problem takes advantage of the fact that
the stimuli have been partitioned with respect to identifiable underlying‘linir'_
contrasts.
R

12

Roo

let R = be the partitioned similarities matrix. The vector

Ry

b has been computed using R , while the vector -b-l

A vector d , of n elements, can be constructed such that the first ny

is based only on Rll .

elements of d are proportional to the elements of b, , and d'R4 is maxi-

mized under the further constraint E_:I_'d =1 .

Let d' = [g_]'_gé] , where d, = kb, for some unknovn scalar k . The

problem is to find ga and k such that

kb! 4! N
[_l 22] R;; Ryp kgll

Ray - Ren| | &

(é7) F(k,d,) =

is maximized under the constraint k2 + 9—592 =1 . Once again applying the

method of Lagrange multipliers, let




(28) Gk, dN) = ck® + diR A, + 2kv'dy - A(E + did

—2"22=2 o2 T - 1)

where c¢ = EiRllP-l and v-= R2l 1 .

Differentia’ing G with respect to k , 52 , and A , ard setting the

derivatives equal to O yields

(29_) g) = 2Ryd, + 2Ky - 2Nd,

(30) g, = 2ck + 2v'd, - 2k =

—l-ke-d'd =0

(51) €3 485 =

It may be safely assumed that k £ O . Premultiplying (29) by d) and

dividing by 2 yields

t - ]
+ kd2v )‘929-2 )

Multiplying (30) by k and dividing by 2 yields

(33) ke + kv'd, - A2

Addirg (32) and (33) yields

2 . .
(34) ck” + diRd, + 2kv'd, —7\(k +dé§2) o .

Equations (34) and (31) imply

(35) A= ek + 4R d, + 2kv'd, = F(k,d,)

Now (29) and (30) can be rewritten more conveniently as

Rap X
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d
-2
From (31), (35), and (36), it follows that is the normalized latent
k
Rap X
' vector corresponding to the largest latent root of .
A c

When the values of -642 and k have been determined to the desired degree

of accuracy, then the solution to the original problem is

(37) d' = [dr di] , where 4, = kb .

Now d , unlike b, , has the same number of elements as b . The coslne

of the angle between b and 4 is simply p_’Ry[(E’Rp_)(g_'Rg)]i .

IV. ‘Example

The similarities matrix for this example (Table 1) contains phi-coefficients
between pairs of subjects, based on 90 binary responses. The data were obtained
in a study of reading comprehension. There were three "treatments," indicated in
the tables and figures by X , Y ,and Z . One of the basic hypotheses of the
study was that subjects within a treatment group would be relatively homogeneous
in terms of their response patterns, and that the groups would be distinet. In

other words, there was an a priori three-cluster hypothesis with respect to the

subject-space.

Table 2 gives the coordinates of the subjects on four contrast components,

namely the first and second Method A and the first and second Method B com-
ponents (Al, A2, Bl, and B2, respectively). In each case, the subjects have
been ordered with respect to their coordinates. Differences between suc-—

cessive pairs of coordinates are given, and partitions have been made according

to the '"‘weak criterion' suggested in Section II.

13
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The right-hand column of Table 2 indicates the first partition of the sub-l
jects according to IICA. Note that this split is the only one which fails to
conform to the initial hypothesis. Furthermore, this misclassification by IICA
is rather "robust," persisting even when the similarities are converted from

Ehi-cc:efficients 4o rank scores.

The extension of A2 and B2, from a 19-subject subspace to the full 28-
subject space, is outlined in Table 3. k was found to be 0.2675 for Method A
and 0.2705 for Method B. The cosine of the angle between the first and extended

second components was found to be -.7753 for Method A and 0.7860 for Method B.

XY T TP T L L L Lt L g

Figure 1 shows a plot of the subjects in the plane determined by the first
and extended second components according to Method A. Figure 2 shows a similar
plot for the Method B components. The appropriate columns of Table 5 have been

scaled according to b'Rb or d4'Rd .

Figures 3 and 4 show plots of two-dimensional orthogonal solutions obtained

by Methods A and B, respectively. The three-cluster structure is apparent.

11




V. Summary and Conclusions

McQuitty's (1967) technique of hierarchical cluster analysis--Iterative

Intercolumnar Correlational Analysis--has been discussed in terms of matrix
algebra and geometry. Under this interpretation, it has been shown that IICA
achieves a solution by transforming the stimulus-vectors themselves toward a
bipolar, one-factor structure. Two alternative methods were suggested for
extracting a single bipolar factor directly from the initial similarities
matrix. Extension of linear contrasts from smaller to larger subspaces was
also discussed. The major features of the new methods x;rere illustrated in the

analysis of some data from a reading comprehension study.
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\
- Table Headings ‘

Table 1. Similarities matrix. Phi-coefficients between pairs of subjects,

based on 90 binary responses. The partitioning indicates the a priori three-

cluster hypothesis. (Decimal points are suppressed.)

Table 2. Coordinates of subjects on contrast components. Subjects have
been ordered with respect to their coordinates, and differences between succes-
sive pairs of coordinates are given in the column to the right of the coordinates
themselves. Partitions according to the weak criterion are given. The right-hand
colwm gives the first partition according to IICA. (Decimal points are sup-
pressed. )

Table 5. Extension of second Method A and Method B contrast components.

Blanks in columns A2 and B2 are filled by the extension 9_2 . Other elements in

columns A2E and B2E are equal to k times the corresponding elements of columns

A2 and B2, respectively.
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Table 1 (Continued)

Z1 z2 23 Zh 75 26 27 z8 Z9 210
p.al -1 3 2 22 22 5 10 T 2 15
X2 8 17 14 11 22 -12 15 21 12 17
X3 0 12 5 2 1 -13 T L 1 6
Xk b 19 9 15 9 -3 16 1 9 -5
X5 2 T 0 L 2 -12 9 5 2 7
X6 9 13 8 5 8 -10 9 8 -2 13
X7 -6 -5 -2 i -5 -20 p) -6 -5 2
X8 19 22 17 1k 19 -2 22 14 19 - 5
X9 0 25 15 24 23 T 24 9 3 16
Y1 25 24 25 15 20 -1 18 18 30 2l
Y2 7 29 23 11 19 7 5 11 19 21
Y3 -7 18 15 10 19 6 -2 -5 -1 12
Yh -1 5 -3 -19 -20 -14 -12 -5 0 -4
YS 20 57 48 30 36 27 28 26 36 4o
Y6 -3 12 9 -8 -7 3 -1 -15 -7 -1
Y7 15 Lo 29 18 18 15 15 23 28 22
Y8 17 11 18 1k 15 -9 10 19 25 18
Y9 20 33 28 18 17 8 20 15 27 21
Z1 100 38 52 L9 L5 19 58 T1 59 Lo
z2 38 100 33 29 26 25 36 36 26 29
Z5 52 33 100 45 65 23 47 55 50 58
Zh 49 29 45 100 48 12 61 31 53 42
Z5 45 26 65 48 100 31 Iy | 57 58 71
76 19 25 23 12 31 100 24 18 L 27
z7 58 36 b7 61 41 24 100 s 41 48
z8 71 36 55 31 57 18 55 100 73 50
Z9 59 26 50 33 58 L b1 73 100 52
710 40 29 58 b2 - T1 27 48 50 52 100
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. Table 2

Coordinates of Subjects on Contrast Components

s# Al diff St A2 diff S# Bl diff s# B2 diff IICA

z1 -239 W =323 X5 -312 b =323 26
005 035 007 03k

78  -234 Y3 -288 X7 -305 Y3 -289 72
000 013 016 01k

7Z9 =234 Y6 -274 X3 -288 ¥6  -274 _ Z9
010 018 017 , 017

23 =223 Y2 -256 X6 -~271 Y2 =257 78
001 006 033 006

725 -222 Y8 -250 : X2 -238 Y8 -251 Z10
008 031 okl 031

710 -21h4 Y9 =219 X8 -197 Yo =221 z5
026 001 ook 001

77 -188 y1 -218 X4 =193 Yl -220 z3
012 027 000 027

zh  -176 Y7 -191 X1 -193 Y7 -193 z7
. 005 126 001 125

z6 -171 Y3 _-066 X9___-193 Y3 =061 zh
055 puuiaguguiubagugubes 134 poduiapupat— 081 <—cecceenn- 135

z2 -116 z2 069 o -112 Z2 068 Z1
010 056 062 057

Y5 -106 76 124 Y3 ~050 z6 124 Y7
oL o7 048 076

Yl -059 ) 202 Y8 -002 zZ3 200 Y5
001 011 012 o1l

Y9 -058 79 213 Y6 009 Z9 211 Y9
012 003 " 013 003

Y7 -ObT7 z10 215 Y2 023 Zl0 21k Ry
020 002 019 003 ————

Y2 -027 Zh 217 Y7 oh2 Zh 217 Y6
017 037 012 036

Y6 -010 z5 254 Y9 o5k Z5 253 h
009 003 002 003

Y8 -~002 z7 257 Yl 055 z7 256 Y8
o48 002 o7 002

Y3 ok6 Z1 259 Y5 102 zZ1 258 Y3
obh 017 012 017

Y4 110 78 276 72 113 z8 2715 Y2
080 058

X9 190 76 172 x8
000 003

X1 190 Zh 175 Xk
001 012

X4 191 27 186 X7
003 025

X8 194 zZl0 212 X3
ohl 008

X2 235 z5 220 X6
o354 001

X6 270 ) 221 X5
016 012

X3 286 79 231 X2
018 001

X7 305 z8 232 X1
006 00¢,

X5 309 z1 238 X9
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Table 3

Extension of Second Method A and Method B Contrast Components

St

X1
X2
X3
X4
X5
X6
X7
X8
X9
Yl
2
Y>3
Y4
Y5

Y6
Y7
Y8
Y9

Zl
z2
z3
zh
25
z6
zt
z8

29
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Figure Captions

Fig. 1. Diot of colums Al (b) and A%E (d) from Teble 3. The
coordinates have been multiplied by the square root of "variance-accounted-for."
The cosine of the angle between the axes is -.76.

Fig. 2. Plot of columns Bl (p) and BZE (4) from Table 3. The coordi-
nates have been multiplied by the square root of ";ariance-accounted-for." The
cosine of the angle between the axes is 0.79.

Fig. 3. Two-dimensional orthogonal solution, Method A.

Fig. 4. Two-dimensional orthogonal solution, Method B.

A
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